First-in-human study to investigate the safety and pharmacokinetics of salvianolic acid A and pharmacokinetic simulation using a physiologically based pharmacokinetic model

Author:

Chen Jinliang,Ruan Zourong,Lou Honggang,Yang Dandan,Shao Rong,Xu Yichao,Hu Xinhua,Jiang Bo

Abstract

Salvianolic acid A (SAA) is a water-soluble phenolic acid component from Salvia miltiorrhiza Bunge currently under development for myocardial protection treatment for coronary heart disease (CHD). We investigated the safety, tolerability, and pharmacokinetics of single and multiple ascending doses of SAA. Additionally, a physiologically based pharmacokinetic (PBPK) model was developed to simulate the pharmacokinetics of SAA. This was a first-in-human (FIH), randomized, double-blind, placebo-controlled, single, and multiple-dose study in 116 healthy Chinese subjects with the range of 10–300 mg and 60–200 mg SAA, respectively. SAA was well tolerated at all dose levels, following both single and multiple doses, with a low overall incidence of treatment-emergent adverse events (TEAEs) which appeared to be no dose-related. The main pharmacokinetic parameter of SAA, assessed by the power model, was the lack of proportionality with the dose range after single dosing. The 90% CIs of the slope β of Cmax (1.214 [1.150–1.278]) and AUC0-t (1.222 [1.156–1.288]) were not within the predefined acceptance range, and the direction of the deviation was higher than expected. PBPK modeling suggested the transfer ability saturation of hepatic organic anion-transporting polypeptide 1B1 (OATP1B1) and P-glycoprotein (P-gp) might result in a relatively low distribution rate at higher doses. Clinical plasma concentrations observed were in good agreement with PBPK prediction. SAA showed well-characterized pharmacokinetics and was generally well tolerated in the dose range investigated. The PBPK model provides valuable pharmacokinetic knowledge for further clinical development.

Funder

National Science and Technology Major Project

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3