Investigation into the potential mechanism and molecular targets of Fufang Xueshuantong capsule for the treatment of ischemic stroke based on network pharmacology and molecular docking

Author:

Wang Lei,Wang Liping,Wang Hui,Zhu Ting

Abstract

Fufang Xueshuantong (FFXST) capsule is a traditional Chinese medicine (TCM) preparation used to activate blood circulation, resolve stasis, benefit qi, and nourish yin in clinical practice. However, its potential mechanism and molecular targets after ischemic stroke (IS) have not been investigated. The aim of this research was to investigate the molecular mechanisms of FFXST in the treatment of IS based on network pharmacology and molecular docking. We used the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) to collect candidate compounds of four herbs in FFXST; disease-related differential genes were screened using the Gene Expression Omnibus (GEO) database, and a compound–disease network was created using Cytoscape 3.8.2 software. The topological analysis of the protein–protein interaction (PPI) network was then created to determine the candidate targets of FFXST against IS. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the clusterProfiler package in R. The gene–pathway network of FFXST against IS was created to obtain the key target genes. Molecular docking was used to validate the core targets using AutoDock Vina 1.1.2. A total of 455 candidate compounds of FFXST and 18,544 disease-related differential genes were screened. Among them, FFXST targets for IS treatment had 67 active compounds and 10 targets in the PPI network related to STAT1, STAT3, and HIF1A. The biological processes of GO analysis included the regulation of reactive oxygen species metabolic process, cellular response to chemical stress, regulation of angiogenesis, regulation of vasculature development, positive regulation of cytokine production, and response to oxidative stress. The KEGG enrichment analysis showed that Kaposi sarcoma-associated herpesvirus infection, microRNAs in the cancer signaling pathway, Th17 cell differentiation, and HIF-1 signaling pathway were significantly enriched. The network pharmacology outcomes were further verified by molecular docking. We demonstrated that FFXST protection against IS may relate to the regulation of oxidative stress, immune inflammatory response, and angiogenesis through the relevant signaling pathways. Our study systematically illustrated the application of network pharmacology and molecular docking in evaluating characteristics of multi-component, multi-target, and multi-pathway of FFXST for IS.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3