P2X7 receptor contributes to long-term neuroinflammation and cognitive impairment in sepsis-surviving mice

Author:

Alves Vinícius Santos,Silva Joyce Pereira da,Rodrigues Fabiana Cristina,Araújo Suzana Maria Bernardino,Gouvêa André Luiz,Leite-Aguiar Raíssa,Santos Stephanie Alexia Cristina Silva,Silva Milla Souza Pessoa da,Ferreira Fernanda Silva,Marques Eduardo Peil,Passos Beatriz Amanda Barbosa Rangel dos,Maron-Gutierrez Tatiana,Kurtenbach Eleonora,da Costa Robson,Figueiredo Cláudia Pinto,Wyse Angela T. S.,Coutinho-Silva Robson,Savio Luiz Eduardo Baggio

Abstract

Introduction: Sepsis is defined as a multifactorial debilitating condition with high risks of death. The intense inflammatory response causes deleterious effects on the brain, a condition called sepsis-associated encephalopathy. Neuroinflammation or pathogen recognition are able to stress cells, resulting in ATP (Adenosine Triphosphate) release and P2X7 receptor activation, which is abundantly expressed in the brain. The P2X7 receptor contributes to chronic neurodegenerative and neuroinflammatory diseases; however, its function in long-term neurological impairment caused by sepsis remains unclear. Therefore, we sought to evaluate the effects of P2X7 receptor activation in neuroinflammatory and behavioral changes in sepsis-surviving mice.Methods: Sepsis was induced in wild-type (WT), P2X7−/−, and BBG (Brilliant Blue G)-treated mice by cecal ligation and perforation (CLP). On the thirteenth day after the surgery, the cognitive function of mice was assessed using the novel recognition object and Water T-maze tests. Acetylcholinesterase (AChE) activity, microglial and astrocytic activation markers, and cytokine production were also evaluated.Results: Initially, we observed that both WT and P2X7−/− sepsis-surviving mice showed memory impairment 13 days after surgery, once they did not differentiate between novel and familiar objects. Both groups of animals presented increased AChE activity in the hippocampus and cerebral cortex. However, the absence of P2X7 prevented partly this increase in the cerebral cortex. Likewise, P2X7 absence decreased ionized calcium-binding protein 1 (Iba−1) and glial fibrillary acidic protein (GFAP) upregulation in the cerebral cortex of sepsis-surviving animals. There was an increase in GFAP protein levels in the cerebral cortex but not in the hippocampus of both WT and P2X7−/− sepsis-surviving animals. Pharmacological inhibition or genetic deletion of P2X7 receptor attenuated the production of Interleukin-1β (IL-1β), Tumor necrosis factor-α (TNF-α), and Interleukin-10 (IL-10).Conclusion: The modulation of the P2X7 receptor in sepsis-surviving animals may reduce neuroinflammation and prevent cognitive impairment due to sepsis-associated encephalopathy, being considered an important therapeutic target.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Reference94 articles.

1. Object recognition testing: Methodological considerations on exploration and discrimination measures;Akkerman;Behav. Brain Res.,2012

2. Lipopolysaccharide-induced sepsis induces long-lasting affective changes in the mouse;Anderson;Brain. Behav. Immun.,2015

3. Hippocampus: A future target for sepsis treatment;Annane;Intensive Care Med.,2009

4. Cognitive decline after sepsis;Annane;Lancet Respir. Med.,2015

5. Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model;Baker;Surgery,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3