Author:
Choudhary Malvi,Gupta Suruchi,Dhar Manoj K.,Kaul Sanjana
Abstract
Catalysis is a process carried out in the presence of a heterogenous catalyst for accelerating the rate of a chemical reaction. It plays a pivotal role in transition from take, make, and dispose technology to sustainable technology via chemo- and biocatalytic processes. However, chemocatalyzed reactions are usually associated with copious amounts of perilous/hazardous environmental footprints. Therefore, whole-cell biotransformations or enzyme cocktails serve as cleaner biocatalytic alternatives in replacing the classical chemical procedures. These benchmark bioconversion reactions serve as important key technology in achieving the goals of green chemistry by eliminating waste generation at source. For this, nature has always been a driving force in fuelling natural product discovery and related applications. The fungal endophytic community, in particular, has undergone co-evolution with their host plant and has emerged as a powerful tool of genetic diversity. They can serve as a treasure trove of biocatalysts, catalyzing organic transformations of a wide range of substances into enantiopure compounds with biotechnological relevance. Additionally, the biocatalytic potential of endophytic fungi as whole-intact organisms/isolated enzyme systems has been greatly expanded beyond the existing boundaries with the advancement in high-throughput screening, molecular biology techniques, metabolic engineering, and protein engineering. Therefore, the present review illustrates the promising applications of endophytic fungi as biocatalysts for the synthesis of new structural analogs and pharmaceutical intermediates and refinement of existing proteins for novel chemistries.
Subject
Biomedical Engineering,Histology,Bioengineering,Biotechnology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献