The Necessity to Seal the Re-Entry Tears of Aortic Dissection After TEVAR: A Hemodynamic Indicator

Author:

Li Zhenfeng,Xu Huanming,Armour Chlöe Harriet,Guo Yuze,Xiong Jiang,Xu Xiaoyun,Chen Duanduan

Abstract

Thoracic endovascular aortic repair (TEVAR) is a common treatment for Stanford type B aortic dissection (TBAD). However, re-entry tears might be found distal to the stented region which transports blood between the true and false lumens. Sealing the re-entry tears, especially for the thoracic tears, could further reduce blood perfusion to the false lumen; however, it might also bring risks by re-intervention or surgery. Wise determination of the necessity to seal the re-entry tears is needed. In this study, patient-specific models of TBAD were reconstructed, and the modified models were established by virtually excluding the thoracic re-entries. Computational hemodynamics was investigated, and the variation of the functional index and first balance position (FBP) of the luminal pressure difference, due to the sealing of the re-entries, was reported. The results showed that the direction of the net flow through the unstented thoracic re-entries varied among cases. Excluding the re-entries with the net flow toward the false lumen may induce the FBP moving distally and the relative particle residence time increasing in the false lumen. This study preliminarily demonstrated that the hemodynamic status of the re-entry tears might serve as an indicator to the necessity of sealing. By quantifying the through-tear flow exchange and shift of FBP, one can predict the hemodynamic benefit by sealing the thoracic re-entries and thus wisely determine the necessity of further interventional management.

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Beijing Municipal Science and Technology Commission

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3