Cardiotocography analysis by empirical dynamic modeling and Gaussian processes

Author:

Feng Guanchao,Heiselman Cassandra,Quirk J. Gerald,Djurić Petar M.

Abstract

Introduction:During labor, fetal heart rate (FHR) and uterine activity (UA) can be continuously monitored using Cardiotocography (CTG). This is the most widely adopted approach for electronic fetal monitoring in hospitals. Both FHR and UA recordings are evaluated by obstetricians for assessing fetal well-being. Due to the complex and noisy nature of these recordings, the evaluation by obstetricians suffers from high interobserver and intraobserver variability. Machine learning is a field that has seen unprecedented advances in the past two decades and many efforts have been made in computerized analysis of CTG using machine learning methods. However, in the literature, the focus is often only on FHR signals unlike in evaluations performed by obstetricians where the UA signals are also taken into account.Methods:Machine learning is a field that has seen unprecedented advances in the past two decades and many efforts have been made in computerized analysis of CTG using machine learning methods. However, in the literature, the focus is often only on FHR signals unlike in evaluations performed by obstetricians where the UA signals are also taken into account. In this paper, we propose to model intrapartum CTG recordings from a dynamical system perspective using empirical dynamic modeling with Gaussian processes, which is a Bayesian nonparametric approach for estimation of functions.Results and Discussion:In the context of our paper, Gaussian processes are capable for simultaneous estimation of the dimensionality of attractor manifolds and reconstructing of attractor manifolds from time series data. This capacity of Gaussian processes allows for revealing causal relationships between the studied time series. Experimental results on real CTG recordings show that FHR and UA signals are causally related. More importantly, this causal relationship and estimated attractor manifolds can be exploited for several important applications in computerized analysis of CTG recordings including estimating missing FHR samples, recovering burst errors in FHR tracings and characterizing the interactions between FHR and UA signals.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3