Solution-free and simplified H&E staining using a hydrogel-based stamping technology

Author:

Kim Jinho,Choi Woongsun,Yoo Dahyeon,Kim Mijin,Cho Haeyon,Sung Hyun-Jung,Choi Gyuheon,Uh Jisu,Kim Jinseong,Go Heounjeong,Choi Kyung-Hak

Abstract

Hematoxylin and eosin (H&E) staining has been widely used as a fundamental and essential tool for diagnosing diseases and understanding biological phenomena by observing cellular arrangements and tissue morphological changes. However, conventional staining methods commonly involve solution-based, complex, multistep processes that are susceptible to user-handling errors. Moreover, inconsistent staining results owing to staining artifacts pose real challenges for accurate diagnosis. This study introduces a solution-free H&E staining method based on agarose hydrogel patches that is expected to represent a valuable tool to overcome the limitations of the solution-based approach. Using two agarose gel-based hydrogel patches containing hematoxylin and eosin dyes, H&E staining can be performed through serial stamping processes, minimizing color variation from handling errors. This method allows easy adjustments of the staining color by controlling the stamping time, effectively addressing variations in staining results caused by various artifacts, such as tissue processing and thickness. Moreover, the solution-free approach eliminates the need for water, making it applicable even in environmentally limited middle- and low-income countries, while still achieving a staining quality equivalent to that of the conventional method. In summary, this hydrogel-based H&E staining method can be used by researchers and medical professionals in resource-limited settings as a powerful tool to diagnose and understand biological phenomena.

Funder

Asan Institute for Life Sciences, Asan Medical Center

Korea Medical Device Development Fund

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3