Design feature combinations effects of running shoe on plantar pressure during heel landing: A finite element analysis with Taguchi optimization approach

Author:

Yang Zihan,Cui Chuyi,Wan Xianglin,Zheng Zhiyi,Yan Songhua,Liu Hui,Qu Feng,Zhang Kuan

Abstract

Large and repeated impacts on the heel during running are among the primary reasons behind runners’ injuries. Reducing plantar pressure can be conducive to reducing running injury and improving running performance and is primarily achieved by modifying the design parameters of running shoes. This study examines the effect of design parameters of running shoes (i.e., heel-cup, insole material, midsole material, and insole thickness) on landing peak plantar pressure and determines the combination of different parameters that optimize cushion effects by employing the Taguchi method. We developed the foot–shoe finite element (FE) model through reverse engineering. Model assembly with different design parameters was generated in accordance with the Taguchi method orthogonal table. The effectiveness of the model was verified using the static standing model in Ansys. The significance and contribution of different design parameters, and the optimal design to reduce plantar pressure during landing, were determined using the Taguchi method. In the descending order of percentage contribution was a conforming heel-cup (53.18%), insole material (25.89%), midsole material (7.81%), and insole thickness (2.69%). The more conforming heel-cup (p < 0.001) and softer insole (p = 0.001) reduced the heel pressure during landing impact. The optimal design of running shoe in this study was achieved with a latex insole, a 6 mm insole thickness, an Asker C-45 hardness midsole, and a 100% conforming heel-cup. The conforming heel-cup and the insole material significantly affected the peak plantar pressure during heel landing. The implementation of a custom conforming heel-cup is imperative for relieving high plantar pressure for long-distance heel-strike runners.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3