Anthropomorphic motion planning for multi-degree-of-freedom arms

Author:

Zheng Xiongfei,Han Yunyun,Liang Jiejunyi

Abstract

With the development of technology, the humanoid robot is no longer a concept, but a practical partner with the potential to assist people in industry, healthcare and other daily scenarios. The basis for the success of humanoid robots is not only their appearance, but more importantly their anthropomorphic behaviors, which is crucial for the human-robot interaction. Conventionally, robots are designed to follow meticulously calculated and planned trajectories, which typically rely on predefined algorithms and models, resulting in the inadaptability to unknown environments. Especially when faced with the increasing demand for personalized and customized services, predefined motion planning cannot be adapted in time to adapt to personal behavior. To solve this problem, anthropomorphic motion planning has become the focus of recent research with advances in biomechanics, neurophysiology, and exercise physiology which deepened the understanding of the body for generating and controlling movement. However, there is still no consensus on the criteria by which anthropomorphic motion is accurately generated and how to generate anthropomorphic motion. Although there are articles that provide an overview of anthropomorphic motion planning such as sampling-based, optimization-based, mimicry-based, and other methods, these methods differ only in the nature of the planning algorithms and have not yet been systematically discussed in terms of the basis for extracting upper limb motion characteristics. To better address the problem of anthropomorphic motion planning, the key milestones and most recent literature have been collated and summarized, and three crucial topics are proposed to achieve anthropomorphic motion, which are motion redundancy, motion variation, and motion coordination. The three characteristics are interrelated and interdependent, posing the challenge for anthropomorphic motion planning system. To provide some insights for the research on anthropomorphic motion planning, and improve the anthropomorphic motion ability, this article proposes a new taxonomy based on physiology, and a more complete system of anthropomorphic motion planning by providing a detailed overview of the existing methods and their contributions.

Publisher

Frontiers Media SA

Reference124 articles.

1. Imitating human reaching motions using physically inspired optimization principles;Albrecht,2011

2. Human-like movements of robotic arms with redundant DOFs: virtual spring-damper hypothesis to tackle the Bernstein problem;Arimoto,2006

3. Affect in human-robot interaction;Arkin,2014

4. A biomimetic approach to inverse kinematics for a redundant robot arm;Artemiadis;Aut. Robots,2010

5. Kinematic features of unrestrained vertical arm movements;Atkeson;J. Neurosci.,1985

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3