BMSCs and Osteoblast-Engineered ECM Synergetically Promotes Osteogenesis and Angiogenesis in an Ectopic Bone Formation Model

Author:

Zhang Chi,Xia Dongdong,Li Jiajing,Zheng Yanan,Weng Bowen,Mao Haijiao,Mei Jing,Wu Tao,Li Mei,Zhao Jiyuan

Abstract

Bone mesenchymal stem cells (BMSCs) have been extensively used in bone tissue engineering because of their potential to differentiate into multiple cells, secrete paracrine factors, and attenuate immune responses. Biomaterials are essential for the residence and activities of BMSCs after implantation in vivo. Recently, extracellular matrix (ECM) modification with a favorable regenerative microenvironment has been demonstrated to be a promising approach for cellular activities and bone regeneration. The aim of the present study was to evaluate the effects of BMSCs combined with cell-engineered ECM scaffolds on osteogenesis and angiogenesis in vivo. The ECM scaffolds were generated by osteoblasts on the small intestinal submucosa (SIS) under treatment with calcium (Ca)-enriched medium and icariin (Ic) after decellularization. In a mouse ectopic bone formation model, the SIS scaffolds were demonstrated to reduce the immune response, and lower the levels of immune cells compared with those in the sham group. Ca/Ic-ECM modification inhibited the degradation of the SIS scaffolds in vivo. The generated Ca/Ic-SIS scaffolds ectopically promoted osteogenesis according to the results of micro-CT and histological staining. Moreover, BMSCs on Ca/Ic-SIS further increased the bone volume percentage (BV/TV) and bone density. Moreover, angiogenesis was also enhanced by the Ca/Ic-SIS scaffolds, resulting in the highest levels of neovascularization according to the data ofCD31 staining. In conclusion, osteoblast-engineered ECM under directional induction is a promising strategy to modify biomaterials for osteogenesis and angiogenesis. BMSCs synergetically improve the properties of ECM constructs, which may contribute to the repair of large bone defects.

Funder

National Natural Science Foundation of China

Zhejiang Key Laboratory of Pathophysiology

Natural Science Foundation of Zhejiang Province

Natural Science Foundation of Ningbo

K. C. Wong Magna Fund in Ningbo University

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3