Tongue feature recognition to monitor rehabilitation: deep neural network with visual attention mechanism

Author:

Yi Zhengheng,Lai Xinsheng,Sun Aining,Fang Senlin

Abstract

ObjectiveWe endeavor to develop a novel deep learning architecture tailored specifically for the analysis and classification of tongue features, including color, shape, and coating. Unlike conventional methods based on architectures like VGG or ResNet, our proposed method aims to address the challenges arising from their extensive size, thereby mitigating the overfitting problem. Through this research, we aim to contribute to the advancement of techniques in tongue feature recognition, ultimately leading to more precise diagnoses and better patient rehabilitation in Traditional Chinese Medicine (TCM).MethodsIn this study, we introduce TGANet (Tongue Feature Attention Network) to enhance model performance. TGANet utilizes the initial five convolutional blocks of pre-trained VGG16 as the backbone and integrates an attention mechanism into this backbone. The integration of the attention mechanism aims to mimic human cognitive attention, emphasizing model weights on pivotal regions of the image. During the learning process, the allocation of attention weights facilitates the interpretation of causal relationships in the model’s decision-making.ResultsExperimental results demonstrate that TGANet outperforms baseline models, including VGG16, ResNet18, and TSC-WNet, in terms of accuracy, precision, F1 score, and AUC metrics. Additionally, TGANet provides a more intuitive and meaningful understanding of tongue feature classification models through the visualization of attention weights.ConclusionIn conclusion, TGANet presents an effective approach to tongue feature classification, addressing challenges associated with model size and overfitting. By leveraging the attention mechanism and pre-trained VGG16 backbone, TGANet achieves superior performance metrics and enhances the interpretability of the model’s decision-making process. The visualization of attention weights contributes to a more intuitive understanding of the classification process, making TGANet a promising tool in tongue diagnosis and rehabilitation.

Publisher

Frontiers Media SA

Reference29 articles.

1. Towards precision medicine;Ashley;Nat. Rev. Genet.,2016

2. Multifunctional coatings of nickel-titanium implant toward promote osseointegration after operation of bone tumor and clinical application: a review;Du;Front. Bioeng. Biotechnol.,2024

3. Attention branch network: learning of attention mechanism for visual explanation;Fukui,2019

4. A novel computerized method based on support vector machine for tongue diagnosis;Gao,2007

5. A probabilistic interpretation of precision, recall and f-score, with implication for evaluation;Goutte,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3