A novel dental infiltration resin based on isosorbide-derived dimethacrylate with high biocompatibility, hydrolysis resistance, and antibacterial effect

Author:

Yang Su,Sui Baiyan,Cui Yinan,Liu Xin,Sun Jiao,Wang Jun

Abstract

Objectives: The available infiltration resin has raised biosafety and treatment stability concerns because of the cytotoxicity of the main component, TEGDMA, and its susceptibility to hydrolysis in the oral environment. This study aimed to develop a TEGDMA-free infiltration resin to overcome these drawbacks.Methods: Using the synthetic bioderived monomer bis(methacrylate) isosorbide (IBM) and the zwitterionic compound 2-methacryloyloxyethyl phosphorylcholine (MPC), a novel infiltrant IBMA was developed and preferentially selected. We investigated the performance of the IBMA resin regarding cytotoxicity, antibiofilm adhesion, and hydrolysis resistance and further verified its ability to restore the demineralized enamel and stability of the infiltrated area under artificial aging conditions.Results: Compared with the commercial TEGDMA-based infiltration resin ICON, IBMA not only demonstrated similar enamel morphologic and esthetic restorative effects in chalky lesions but also exhibited favorable cell viability, durable Streptococcus mutans UA159 biofilm-repellent performance, and higher enamel microhardness (204.0 ± 5.12 HV) of the infiltrated enamel. Specifically, because of the high crosslink density [(47.77 ± 5.76) ×103 mol/mm3] and low water sorption [12.79 ± 2.56 µg/mm3] of the polymer network, the IBMA resin was more resistant to hydrolysis than ICON, which prevents the disruption of the infiltrant’s micropore-blocking effect after aging. Enamel lesions treated with IBMA demonstrated good color stability after the tea-staining challenge, which was significantly better than that in the ICON group.Conclusion: Based on these findings, the IBMA resin exhibits favorable cell viability, hydrolysis resistance, and biofilm-repellent properties, which alleviates the defects of traditional TEGDMA systems. Therefore, it is a better alternative for microinvasive treatment involving early caries and enamel whitish discoloration.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3