Systematic Review of the Preclinical Technology Readiness of Orthopedic Gene Therapy and Outlook for Clinical Translation

Author:

Wilkinson Piers,Bozo Ilya Y.,Braxton Thomas,Just Peter,Jones Elena,Deev Roman V.,Giannoudis Peter V.,Feichtinger Georg A.

Abstract

Bone defects and improper healing of fractures are an increasing public health burden, and there is an unmet clinical need in their successful repair. Gene therapy has been proposed as a possible approach to improve or augment bone healing with the potential to provide true functional regeneration. While large numbers of studies have been performed in vitro or in vivo in small animal models that support the use of gene therapy for bone repair, these systems do not recapitulate several key features of a critical or complex fracture environment. Larger animal models are therefore a key step on the path to clinical translation of the technology. Herein, the current state of orthopedic gene therapy research in preclinical large animal models was investigated based on performed large animal studies. A summary and an outlook regarding current clinical studies in this sector are provided. It was found that the results found in the current research literature were generally positive but highly methodologically inconsistent, rendering a comparison difficult. Additionally, factors vital for translation have not been thoroughly addressed in these model systems, and the risk of bias was high in all reviewed publications. These limitations directly impact clinical translation of gene therapeutic approaches due to lack of comparability, inability to demonstrate non-inferiority or equivalence compared with current clinical standards, and lack of safety data. This review therefore aims to provide a current overview of ongoing preclinical and clinical work, potential bottlenecks in preclinical studies and for translation, and recommendations to overcome these to enable future deployment of this promising technology to the clinical setting.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Silk scaffolds for tissue engineering in dentistry;Silk-Based Biomaterials for Tissue Engineering, Regenerative and Precision Medicine;2024

2. Recent advances in gene therapy for bone tissue engineering;Journal of Tissue Engineering and Regenerative Medicine;2022-11-16

3. Gene Therapy in Orthopaedics: Progress and Challenges in Pre-Clinical Development and Translation;Frontiers in Bioengineering and Biotechnology;2022-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3