Lower limb electromyographic characteristics and implications of taekwondo roundhouse kick “hit” and “miss” actions

Author:

Sun Jianbo,Wang Yifei,Dong Delong

Abstract

To compare the muscular characteristics of “hit” and “miss” actions in roundhouse kicks among taekwondo athletes, and explore the similarities, differences, and implications for training, motion tests were conducted on ten taekwondo athletes using Noraxon32 and VICON. The results showed no significant differences (p > 0.05) in integrated electromyography (EMG) during the initiation and kicking phases between “miss” and “hit” actions. However, during the retraction phase, significant differences (p < 0.05) were observed in the left rectus femoris, left peroneus longus, right biceps femoris, right semitendinosus, and right tibialis anterior muscles. The tibialis anterior muscle of the swinging leg was activated first in the “hit” action, while the biceps femoris was activated first in the “miss” action. The supporting-side rectus femoris was activated first in the “hit” action, whereas it was the biceps femoris in the “miss” action. In both techniques, the gluteus maximus was the last muscle to be activated. The “miss” action had a longer cycle, and the duration of muscle work was longer than in the “hit” action. During the retraction phase of the front leg roundhouse kick, the muscles worked more than during the kicking phase, with the erector spinae and tibialis anterior being the core force-producing muscles in both techniques, characterized by high EMG values and long activation times. In the “miss” action, the thigh muscles drove the calf muscles, while the “hit” action exhibited the opposite pattern. “Hit” actions had a faster cycle compared to “miss,” with greater force generation in “miss.” The hip flexors and knee extensors of the kicking leg were the core force-producing muscles during the kicking process, determining the effectiveness and completion of the action.

Funder

Natural Science Foundation of Shandong Province

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3