Unveiling individuality in the early phase of motor learning: a machine learning approach for analysing weightlifting technique in novices

Author:

Ammar Achraf,Simak Marvin Leonard,Salem Atef,Horst Fabian,Schöllhorn Wolfgang Immanuel

Abstract

IntroductionDespite the growing body of evidence highlighting the individuality in movement techniques, predominant models of motor learning, particularly during the acquisition phase, continue to emphasise generalised, person-independent approaches. Biomechanical studies, coupled with machine learning approaches, have demonstrated the uniqueness of movement techniques exhibited by individuals. However, this evidence predominantly pertains to already stabilised movement techniques, particularly evident in cyclic daily activities such as walking, running, or cycling, as well as in expert-level sports movements. This study aims to evaluate the hypothesis of individuality in whole-body movements necessitating intricate coordination and strength among novice participants at the very beginning of an acquisition phase.Methods In a within-subject design, sixteen highly active male participants (mean age: 23.1 ± 2.1 years), all absolute novices in the learning task (i.e., power snatch of Olympic weightlifting), participated in randomised snatch learning bouts. These bouts comprised 36 trials across various motor learning models: differential learning contextual interference (serial, sCIL; and blocked, bCIL), and repetitive learning. Kinematic and kinetic data were collected from three standardised snatch trials performed following each motor learning model bout. The time-continuous data were input to a linear Support Vector Machine (SVM). We conducted analyses on two classification tasks: participant and motor learning model.Results The Support Vector Machine classification revealed a notably superior participant classification compared to the motor learning model classification, with an averaged prediction accuracy of 78% (in average ≈35 out of 45 test trials across the folds) versus 27.3% (in average ≈9 out of 36 test trials across the folds). In specific fold and input combinations, accuracies of 91% versus 38% were respectively achieved.Discussion Methodically, the crucial role of selecting appropriate data pre-processing methods and identifying the optimal combinations of SVM data inputs is discussed in the context of future research. Our findings provide initial support for a dominance of individuality over motor learning models in movement techniques during the early phase of acquisition in Olympic weightlifting power snatch.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3