Immune evaluation of granulocyte-macrophage colony stimulating factor loaded hierarchically 3D nanofiber scaffolds in a humanized mice model

Author:

Chen Rui,Li Yujie,Zhuang Yangyang,Zhang Yiming,Wu Hailong,Lin Tao,Chen Shixuan

Abstract

Background: Immune evaluation of biomaterials for tissue regeneration is a critical preclinical evaluation. The current evaluation criterion (ISO 10993-1 or GB/T 16886) uses rodents to perform the immune evaluation. However, the immune system of rodents is different from humans, the obtained results may not be reliable, which could lead directly to the failure of clinical trials. Granulocyte-macrophage colony-stimulating factor (GM-CSF) shows a great potential application in tissue regeneration by regulating local immune responses. The presented work combines the advantages of GM-CSF (immunoregulation) and hierarchically 3D nanofiber scaffolds (tissue regeneration).Methods: Firstly, we fabricated GM-CSF loaded 3D radially aligned nanofiber scaffolds, and then subcutaneous implantation was performed in humanized mice. The whole scaffold and surrounding tissue were harvested at each indicated time point. Finally, the cell infiltration and local immune responses were detected by histological observations, including H&E and Masson staining and immunochemistry.Results: We found significant cell migration and extracellular matrix deposition within the 3D radially aligned nanofiber scaffold after subcutaneous implantation. The locally released GM-CSF could accelerate the expression of human dendritic cells (CD11c) only 3 days after subcutaneous implantation. Moreover, higher expression of human cytotoxic T cells (CD3+/CD8+), M1 macrophages (CD68/CCR7) was detected within GM-CSF loaded radially aligned nanofiber scaffolds and their surrounding tissues.Conclusions: The 3D radially aligned scaffold can accelerate cell migration from surrounding tissues to regenerate the wound area. And the locally released GM-CSF enhances dendritic cell recruitment and activation of cytotoxic T cells and M1 macrophages. Taken together, the GM-CSF loaded 3D radially aligned nanofiber scaffolds have a promising potential for achieving tissue regeneration.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3