Mesenchymal Stromal Cell-Derived Extracellular Vesicles Modulate Hematopoietic Stem and Progenitor Cell Viability and the Expression of Cell Cycle Regulators in an Age-dependent Manner

Author:

Fichtel Pascal,von Bonin Malte,Kuhnert Robert,Möbus Kristin,Bornhäuser Martin,Wobus Manja

Abstract

Aging of the hematopoietic system is characterized by an expansion of hematopoietic stem and progenitor cells (HSPCs) with reduced capacity for engraftment, self-renewal, and lymphoid differentiation, resulting in myeloid-biased hematopoiesis. This process is mediated by both HSPC intrinsic and extrinsic factors, e.g., the stromal environment. A relevant cellular component of the bone marrow (BM) microenvironment are mesenchymal stromal cells (MSCs) which regulate fate and differentiation of HSPCs. The bi-directional communication with HSPCs is mediated either by direct cell-cell contacts or by extracellular vesicles (EVs) which carry bioactive substances such as small RNA, DNA, lipids and proteins. So far, the impact of MSC-derived EVs on human hematopoietic aging is poorly investigated. BM MSCs were isolated from young (n = 3, median age: 22 years) and aged (n = 3, median age: 70 years) donors and the EVs were isolated after culturing the confluent cell layer in serum-free medium for 48 h. CD34+ HSPCs were purified from peripheral blood of healthy donors (n = 3, median age: 65 years) by magnetic sorting. Nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and western blot detection of EV markers CD63, CD81 and Flotillin-1 revealed no significant differences between young and aged MSC-EVs. Interestingly, young MSCs secreted a significantly higher miRNA concentration than aged cells. However, the amount of distinct miRNAs such as miR-29a and miR-34a was significantly higher in aged MSC-EVs. HSPCs incubated with young EVs showed a significant increase in cell number and a higher viability. The expression of the tumor suppressors PTEN, a known target of mir-29a, and CDKN2A was increased in HSPCs incubated with young EVs. The clonogenic assay demonstrated a decreased colony number of CFU-GM after treatment with young EVs and an increased number of BFU-E/CFU-E after incubation with aged MSC-EVs. Xenogenic transplantation experiments showed no significant differences concerning the engraftment of lymphoid or myeloid cell compartments, but the overall human chimerism 8–16 weeks after transplantation was higher after EV treatment. In conclusion, our data suggest that HSPC characteristics such as cell cycle activity and clonogenicity can be modulated by MSC-derived EVs. Further studies have to elucidate the potential therapeutic relevance of our findings.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3