Impacts of gait biomechanics of patients with thoracolumbar kyphosis secondary to Scheuermann’s disease

Author:

Cheng Hao,Jiang Zi-Ang,Chen Liang,Wang Guo-Dong,Liu Xiao-Yang,Sun Jian-Min,Tsai Tsung-Yuan

Abstract

Introduction: Thoracolumbar kyphosis (TLK) is a common feature in patients with spinal deformities. However, due to limited studies, the impacts of TLK on gait have not been reported. The objective of the study was to quantify and evaluate the impacts of gait biomechanics of patients with TLK secondary to Scheuermann’s disease.Methods: Twenty cases of Scheuermann’s disease patients with TLK and twenty cases of asymptomatic participants were recruited into this study. And the gait motion analysis was conducted.Results: The stride length was shorter in the TLK group compared to control group (1.24 ± 0.11 m vs. 1.36 ± 0.21 m, p = 0.04). Compared to control group, the stride time and step time were more prolonged in the TLK group (1.18 ± 0.11s vs. 1.11 ± 0.08 s, p = 0.03; 0.59 ± 0.06 s vs. 0.56 ± 0.04 s, p = 0.04). The gait speed of the TLK group was significantly slower than it of control group (1.05 ± 0.12 m/s vs. 1.17 ± 0.14 m/s, p = 0.01); In the sagittal plane, the range of motion (ROM) of the hip in the TLK group was significantly smaller than that of the control group (37.71 ± 4.35° vs. 40.05 ± 3.71°, p = 0.00). In the transverse plane, the adduction/abduction ROMs of the knee and ankle, as well as the internal and external rotation of the knee, were smaller in TLK group than ROMs in the control group (4.66 ± 2.21° vs. 5.61 ± 1.82°, p = 0.00; 11.48 ± 3.97° vs. 13.16 ± 5.6°, p = 0.02; 9.00 ± 5.14° vs. 12.95 ± 5.78°, p = 0.00).Discussion: The main finding of this study was that measurements of gait patterns and joint movement of the TLK group were significantly lower than those of the control group. And these impacts have the potential to exacerbate degenerative progress of joints in the lower extremities. These abnormal features of gait can also serve as a guideline for physicians to focus on TLK in these patients.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3