Engineering of the Recombinant Expression and PEGylation Efficiency of the Therapeutic Enzyme Human Thymidine Phosphorylase

Author:

Karamitros Christos S.,Somody Catrina M.,Agnello Giulia,Rowlinson Scott

Abstract

Human thymidine phosphorylase (HsTP) is an enzyme with important implications in the field of rare metabolic diseases. Defective mutations of HsTP lead to mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), a disease with a high unmet medical need that is associated with severe neurological and gastrointestinal complications. Current efforts focus on the development of an enzyme replacement therapy (ERT) using the Escherichia coli ortholog (EcTP). However, bacterial enzymes are counter-indicated for human therapeutic applications because they are recognized as foreign by the human immune system, thereby eliciting adverse immune responses and raising significant safety and efficacy risks. Thus, it is critical to utilize the HsTP enzyme as starting scaffold for pre-clinical drug development, thus de-risking the safety concerns associated with the use of bacterial enzymes. However, HsTP expresses very poorly in E. coli, whereas its PEGylation, a crucial chemical modification for achieving long serum persistence of therapeutic enzymes, is highly inefficient and negatively affects its catalytic activity. Here we focused on the engineering of the recombinant expression profile of HsTP in E. coli cells, as well as on the optimization of its PEGylation efficiency aiming at the development of an alternative therapeutic approach for MNGIE. We show that phylogenetic and structural analysis of proteins can provide important insights for the rational design of N’-terminus-truncation constructs which exhibit significantly improved recombinant expression levels. In addition, we developed and implemented a criteria-driven rational surface engineering strategy for the substitution of arginine-to-lysine and lysine-to-arginine residues to achieve more efficient, homogeneous and reproducible PEGylation without negatively affecting the enzymatic catalytic activity upon PEGylation. Collectively, our proposed strategies provide an effective way to optimize enzyme PEGylation and E. coli recombinant expression and are likely applicable for other proteins and enzymes.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3