Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine

Author:

Zhang Yongtao,Wu Di,Zhao Xia,Pakvasa Mikhail,Tucker Andrew Blake,Luo Huaxiu,Qin Kevin H.,Hu Daniel A.,Wang Eric J.,Li Alexander J.,Zhang Meng,Mao Yukun,Sabharwal Maya,He Fang,Niu Changchun,Wang Hao,Huang Linjuan,Shi Deyao,Liu Qing,Ni Na,Fu Kai,Chen Connie,Wagstaff William,Reid Russell R.,Athiviraham Aravind,Ho Sherwin,Lee Michael J.,Hynes Kelly,Strelzow Jason,He Tong-Chuan,El Dafrawy Mostafa

Abstract

Bone is a dynamic organ with high regenerative potential and provides essential biological functions in the body, such as providing body mobility and protection of internal organs, regulating hematopoietic cell homeostasis, and serving as important mineral reservoir. Bone defects, which can be caused by trauma, cancer and bone disorders, pose formidable public health burdens. Even though autologous bone grafts, allografts, or xenografts have been used clinically, repairing large bone defects remains as a significant clinical challenge. Bone tissue engineering (BTE) emerged as a promising solution to overcome the limitations of autografts and allografts. Ideal bone tissue engineering is to induce bone regeneration through the synergistic integration of biomaterial scaffolds, bone progenitor cells, and bone-forming factors. Successful stem cell-based BTE requires a combination of abundant mesenchymal progenitors with osteogenic potential, suitable biofactors to drive osteogenic differentiation, and cell-friendly scaffold biomaterials. Thus, the crux of BTE lies within the use of cell-friendly biomaterials as scaffolds to overcome extensive bone defects. In this review, we focus on the biocompatibility and cell-friendly features of commonly used scaffold materials, including inorganic compound-based ceramics, natural polymers, synthetic polymers, decellularized extracellular matrix, and in many cases, composite scaffolds using the above existing biomaterials. It is conceivable that combinations of bioactive materials, progenitor cells, growth factors, functionalization techniques, and biomimetic scaffold designs, along with 3D bioprinting technology, will unleash a new era of complex BTE scaffolds tailored to patient-specific applications.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3