Reduced synaptic tagging by complement protein C3 is associated with elevated extracellular matrix in the middle-aged cerebellum of mice

Author:

Düsedau Henning Peter,Cangalaya Carla,Stoyanov Stoyan,Dityatev Alexander,Dunay Ildiko Rita

Abstract

BackgroundAging of the brain is associated with cognitive decline and recognized as a major risk factor for the development of neurodegenerative diseases. On a cellular level, brain aging is accompanied by a progressive increase of the basal pro-inflammatory tonus, leading to the activation of phagocytic pathways in brain-resident microglia and disruptive effects on synaptic neurotransmission. While the aging process affects all brain compartments at different velocities and one of the particularly affected regions is the cerebellum (CB), the underlying effects remain elusive.MethodsIn the present study, we harnessed a murine model of natural aging in males combined with orthogonal experimental approaches comprising of cytokine gene expression analysis, flow cytometry, immunohistochemistry, and flow synaptometry.ResultsWe report age-dependent morphological and phenotypic changes in microglia that are distinct in the cortex (CTX) and CB. Furthermore, we show an increased expression of cytokines and complement factors upon aging and a decline of C3-tagged VGLUT1+ presynaptic puncta in the CB. Using flow synaptometry to quantify the composition of synapses in more detail, we validated the reduction of C3b-labeled excitatory synaptosomes while the overall frequency of glutamatergic synaptosomes remained unaffected by aging. Notably, proteoglycans brevican and aggrecan, key components of the neural extracellular matrix, were significantly upregulated in the middle-aged CB.DiscussionThe data presented herein suggests the ECM-mediated shielding of synapses from complement-tagging and subsequent engulfment by microglia. Thus, we provide novel insights into mechanisms that may confer resilience in the brain by modulating synapse removal in the context of aging.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3