Transcranial Direct Current Stimulation Alleviates Neurovascular Unit Dysfunction in Mice With Preclinical Alzheimer’s Disease

Author:

Luo Yinpei,Yang Hong,Yan Xiaojing,Wu Yaran,Wei Guoliang,Wu Xiaoying,Tian Xuelong,Xiong Ying,Wu Guangyan,Wen Huizhong

Abstract

Neurons, glial cells and blood vessels are collectively referred to as the neurovascular unit (NVU). In the Alzheimer’s disease (AD) brain, the main components of the NVU undergo pathological changes. Transcranial direct current stimulation (tDCS) can protect neurons, induce changes in glial cells, regulate cerebral blood flow, and exert long-term neuroprotection. However, the mechanism by which tDCS improves NVU function is unclear. In this study, we explored the effect of tDCS on the NVU in mice with preclinical AD and the related mechanisms. 10 sessions of tDCS were given to six-month-old male APP/PS1 mice in the preclinical stage. The model group, sham stimulation group, and control group were made up of APP/PS1 mice and C57 mice of the same age. All mice were histologically evaluated two months after receiving tDCS. Protein content was measured using Western blotting and an enzyme-linked immunosorbent assay (ELISA). The link between glial cells and blood vessels was studied using immunofluorescence staining and lectin staining. The results showed that tDCS affected the metabolism of Aβ; the levels of Aβ, amyloid precursor protein (APP) and BACE1 were significantly reduced, and the levels of ADAM10 were significantly increased in the frontal cortex and hippocampus in the stimulation group. In the stimulation group, tDCS reduced the protein levels of Iba1 and GFAP and increased the protein levels of NeuN, LRP1 and PDGRFβ. This suggests that tDCS can improve NVU function in APP/PS1 mice in the preclinical stage. Increased blood vessel density and blood vessel length, decreased IgG extravasation, and increased the protein levels of occludin and coverage of astrocyte foot processes with blood vessels suggested that tDCS had a protective effect on the blood-brain barrier. Furthermore, the increased numbers of Vimentin, S100 expression and blood vessels (lectin-positive) around Aβ indicated that the effect of tDCS was mediated by astrocytes and blood vessels. There was no significant difference in these parameters between the model group and the sham stimulation group. In conclusion, our results show that tDCS can improve NVU function in APP/PS1 mice in the preclinical stage, providing further support for the use of tDCS as a treatment for AD.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cognitive Neuroscience,Aging

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3