Linking cognitive functioning and postural balance control through virtual reality environmental manipulations

Author:

Imaoka Yu,Hauri Laura,Flury Andri,de Bruin Eling D.

Abstract

BackgroundDementia is becoming a relevant problem worldwide. A simple screening at an early stage will be important to detect the risk of developing dementia. Vestibular dysfunction is likely to be associated with cognitive impairment. Since head-mounted display (HMD) virtual reality (VR) technology has the potential to activate the vestibular function, assessing postural sway with visual stimulation using HMD VR technology could be potentially useful for dementia screening.ObjectiveThe purpose of this study is to evaluate the effect of HMD-based VR visual stimuli on posture in older adults and the relationship between the stimulated body sway behaviors and cognitive performance.MethodUsing a cross-sectional study design, we investigated the effect of an optokinetic design-based room with stripes (OKR) VR environment oscillating forwards and backwards at 23/60Hz. Center of pressure (COP) displacement was measured in older adults aged 65 years and over in the OKR VR environment. The frequency response of COP was compared to the cognitive performance of the Montreal Cognitive Assessment (MoCA).Results20 healthy older adults (70.4 ± 4.9 years; 27.2 ± 1.6 MoCA score) and 3 people with mild cognitive impairment (74.7 ± 4.0 years; 20.3 ± 2.1 MoCA score) were assessed. The results reveal that the oscillating OKR VR environment induced different postural sway in the anterior-posterior direction in the real world. Correlation analysis shows that the cognitive test score was associated with the frequency response of stimulated postural sway in the anterior-posterior direction (frequency Band 1 of 0−0.5Hz related to the visual and vestibular systems: rs = 0.45, P = 0.03).ConclusionOutcomes would suggest that a potential link may emerge between cognition and posture when the HMD-based VR visual stimuli are applied. The simple screening of stimulated postural sway could explain cognitive functioning. Further studies are warranted to clarify the vestibular system and spatial cognitive function more specifically in the proposed assessment system.

Publisher

Frontiers Media SA

Subject

Cognitive Neuroscience,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3