Magnetopause MHD surface wave theory: progress & challenges

Author:

Archer Martin O.,Pilipenko Vyacheslav A.,Li Bo,Sorathia Kareem,Nakariakov Valery M.,Elsden Tom,Nykyri Katariina

Abstract

Sharp boundaries are a key feature of space plasma environments universally, with their wave-like motion (driven by pressure variations or flow shears) playing a key role in mass, momentum, and energy transfer. This review summarises magnetohydrodynamic surface wave theory with particular reference to Earth’s magnetopause, due to its mediation of the solar-terrestrial interaction. Basic analytic theory of propagating and standing surface waves within simple models are presented, highlighting many of the typically-used assumptions. We raise several conceptual challenges to understanding the nature of surface waves within a complex environment such as a magnetosphere, including the effects of magnetic topology and curvilinear geometry, plasma inhomogeneity, finite boundary width, the presence of multiple boundaries, turbulent driving, and wave nonlinearity. Approaches to gain physical insight into these challenges are suggested. We also discuss how global simulations have proven a fruitful tool in studying surface waves in more representative environments than analytic theory allows. Finally, we highlight strong interdisciplinary links with solar physics which might help the magnetospheric community. Ultimately several upcoming missions provide motivation for advancing magnetopause surface wave theory towards understanding their global role in filtering, accumulating, and guiding turbulent solar wind driving.

Funder

UK Research and Innovation

International Space Science Institute

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3