How catching the interstellar wind in the inner solar system led the way on a road to interdisciplinary research between heliophysics and astrophysics

Author:

Möbius Eberhard

Abstract

Combined in situ observations of the interstellar wind through the solar system and of its pickup ions (PUIs), implanted after ionization in the solar wind, explain, in comparison with interstellar absorption lines of nearby stars, that the Sun is in an interaction region of the two nearest interstellar clouds. This new finding disrupts the long-held understanding that we are inside the local interstellar cloud (LIC). We discuss how space physics evolved toward such interdisciplinary studies between heliophysics and astrophysics. In 1984, the discovery of interstellar He+ PUIs exposed the very local interstellar medium to in situ diagnostics at 1AU. These PUIs provide the interstellar gas composition and form a stepping stone for the acceleration of ions, especially into anomalous cosmic rays. Using the Sun as a gravitational spectrograph, direct imaging of the neutral interstellar wind, first for He and then for H, O, and Ne, provides the interstellar gas velocity vector and temperature at the heliopause. Combining the interstellar gas flow vectors, those of secondary neutral He and O, and the interstellar magnetic field direction deduced from the interstellar H deflection and termination shock anisotropy seen by the Voyagers provides synergistically the heliosphere’s shape, its interaction with the interstellar medium, and constrains our radiation environment. This ISMF organizes the bright Ribbon seen in all-sky images of energetic neutral atoms with the potential to provide its precision determination. The elemental and isotopic composition from PUI and neutral gas observations constrains the galactic evolution and Big Bang cosmology, opening additional interdisciplinary opportunities.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference128 articles.

1. Observation of anisotropy in the arrival directions of galactic cosmic rays at multiple angular scales with IceCube;Abbasi;Astrophys. J.,2011

2. Discovery of localized regions of excess 10-TeV cosmic rays;Abdo;Phys. Rev. Lett.,2008

3. The large-scale cosmic-ray anisotropy as observed with Milagro;Abdo;Astrophys. J.,2009

4. Determination of interstellar helium parameters from theULYSSES-NEUTRALGAS experiment: Method of data analysis;Banaszkiewicz;Astron. Astrophys. Suppl.,1996

5. Evidence for a source of an extraterrestrial hydrogen lyman-alpha emission;Bertaux;Astron. Astrophys.,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3