Spatial and temporal characteristic of PM2.5 and influence factors in the Yellow River Basin

Author:

Han Li,Han Meng,Wang Yiwen,Wang Hua,Niu Jiqiang

Abstract

The Yellow River Basin has been instrumental in advancing ecological preservation and fostering national high-quality development. However, since the advent of China’s reform and opening-up policies, the basin has faced severe environmental pollution issues. This study leverages remote sensing data from 1998 to 2019. As per the “Basin Scope and Its Historical Changes” published by the Yellow River Conservancy Commission of the Ministry of Water Resources, the Yellow River Basin is categorized into upstream, midstream, and downstream regions for analysis of their spatial and temporal distribution traits using spatial autocorrelation methods. Additionally, we employed probes to study the effects of 10 factors, including mean surface temperature and air pressure, on PM2.5. The study findings reveal that (1) the annual average concentration of PM2.5 in the Yellow River Basin exhibited a fluctuating trend from 1998 to 2019, initially increasing, then decreasing, followed by another increase before ultimately declining. (2) The air quality in the Yellow River Basin is relatively poor, making it challenging for large-scale areas with low PM2.5 levels to occur. (3) The PM2.5 concentration in the Yellow River Basin exhibits distinct high and low-value concentration areas indicative of air pollution. Low-value areas are predominantly found in the sparsely populated central and southwestern plateau regions of Inner Mongolia, characterized by a better ecological environment. In contrast, high-value areas are prevalent in the inland areas of Northwest China, with poorer natural conditions, as well as densely populated zones with high energy demand and a relatively developed economy. (4) The overall population density in the Yellow River Basin, as well as in the upstream, midstream, and downstream regions, serves as a primary driving factor. (5) The primary drivers in the middle reaches and the entire Yellow River Basin remain consistent, whereas those in the upper and lower reaches have shifted. In the upstream, air pressure emerges as a primary driver of PM2.5, while in the downstream, NDVI and precipitation become the main influencing factors.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3