Early recognition of risk of critical adverse events based on deep neural decision gradient boosting

Author:

Chen Yu-wen,Xu Lin-quan,Yi Bin

Abstract

IntroductionPerioperative critical events will affect the quality of medical services and threaten the safety of patients. Using scientific methods to evaluate the perioperative risk of critical illness is of great significance for improving the quality of medical services and ensuring the safety of patients.MethodAt present, the traditional scoring system is mainly used to predict the score of critical illness, which is mainly dependent on the judgment of doctors. The result is affected by doctors' knowledge and experience, and the accuracy is difficult to guarantee and has a serious lag. Besides, the statistical prediction method based on pure data type do not make use of the patient's diagnostic text information and cannot identify comprehensive risk factor. Therefore, this paper combines the text features extracted by deep neural network with the pure numerical type features extracted by XGBOOST to propose a deep neural decision gradient boosting model. Supervised learning was used to train the risk prediction model to analyze the occurrence of critical illness during the perioperative period for early warning.ResultsWe evaluated the proposed methods based on the real data of critical illness patients in one hospital from 2014 to 2018. The results showed that the critical disease risk prediction model based on multiple modes had faster convergence rate and better performance than the risk prediction model based on text data and pure data type.DiscussionBased on the machine learning method and multi-modal data of patients, this paper built a prediction model for critical adverse events in patients, so that the risk of critical events can be predicted for any patient directly based on the preoperative and intraoperative characteristic data. At present, this work only classifies and predicts the occurrence of critical illness during or after operation based on the preoperative examination data of patients, but does not discuss the specific time when the patient was critical illness, which is also the direction of our future work.

Funder

Natural Science Foundation of Chongqing

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3