Household Transmission of Community-Associated Methicillin-Resistant Staphylococcus Aureus

Author:

Zhu Feiteng,Zhuang Hemu,Ji Shujuan,Xu Er,Di Lingfang,Wang Zhengan,Jiang Shengnan,Wang Haiping,Sun Lu,Shen Ping,Yu Yunsong,Chen Yan

Abstract

Currently, the mechanism of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) transmission mechanism is unclear; however, it must be considered in conjunction with asymptomatic S. aureus strains colonization dynamics. This epidemiological study aimed to determine the role of the household in CA-MRSA transmission in China. Five patients with culture-confirmed CA-MRSA infection and five control patients were recruited from the Sir Run Run Shaw Hospital in Zhejiang, China, between December 2019 and January 2020. The household members of the patients, their pets, and environmental surfaces were sampled and screened for MRSA colonization. Mass spectrometry identification and antimicrobial susceptibility testing were performed on the MRSA isolates. Whole-genome sequencing and core genome multilocus sequence typing (cgMLST) were performed to determine the origin and transmission of the MRSA isolates in the households. Overall, 14 S. aureus-positive specimens (14.1%, 14/99) were obtained from the five households of patients with CA-MRSA infections, of which 12 (85.7%) were MRSA. The overall positivity of MRSA was 12.1% (12/99) among the samples from the CA-MRSA households, while no MRSA isolates were detected in the five control households. Most MRSA isolates belonged to epidemic CA-MRSA clones, such as ST59 (15/35, 42.9%) and ST508 (15/35, 42.9%). The cgMLST results confirmed that MRSA was transmitted among patients, contacts, and pets in the households and was present on environmental surfaces in the CA-MRSA patients' households. In conclusion, the study revealed that the home environment was an important MRSA reservoir. Therefore, focusing on MRSA decolonization in patients alone is not sufficient for infection control of CA-MRSA.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3