Effects of intra- and inter-day temperature change on acute upper respiratory infections among college students, assessments of three temperature change indicators

Author:

Jiang Feng,Wang Rensong,Yang Yongli,Jia Xiaocan,Ma Leying,Yuan Mengyang,Liu Kangkang,Bao Junzhe

Abstract

BackgroundAcute upper respiratory infection (AURI) is a significant disease affecting all age groups worldwide. The differences in the impacts of different temperature change indicators, such as diurnal temperature range (DTR), temperature variation (TV), and temperature change between neighboring days (TCN), on AURI morbidity, are not clear.MethodsWe collected data on 87,186 AURI patients during 2014–2019 in Zhengzhou. Distributed lag non-linear model was adopted to examine the effects of different temperature change indicators on AURI. We calculated and compared the attributable fractions (AF) of AURI morbidity caused by various indicators. We used stratified analysis to investigate the modification effects of season and gender.ResultsWith the increase in DTR and TV, the risk of AURI tended to increase; the corresponding AF values (95% eCI) higher than the references (5% position of the DTR or TV distribution) were 24.26% (15.46%, 32.05%), 23.10% (15.59%, 29.20%), and 19.24% (13.90%, 24.63%) for DTR, TV0 − 1, and TV0 − 7, respectively. The harmful effects of TCN on AURI mainly occurred when the temperature dropped (TCN < 0), and the AF value of TCN below the reference (0°C) was 3.42% (1.60%, 5.14%). The harm of DTR and TV were statistically significant in spring, autumn and winter, but not in summer, while the harm of TCN mainly occurred in winter. Three indicators have statistically significant effects on both males and females.ConclusionsHigh DTR and TV may induce AURI morbidity, while the harm of TCN occurs when the temperature drops. The impacts of DTR and TV on AURI are higher than that of TCN, and the impact of few-day TV is higher than that of multi-day TV. The adverse effects of DTR and TV are significant except in summer, while the hazards of TCN mainly occur in winter.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3