Exploring the potential of cold plasma treatment followed by zinc-priming for biofortification of buckwheat sprouts

Author:

Starič Pia,Remic Lucija,Vogel-Mikuš Katarina,Junkar Ita,Vavpetič Primož,Kelemen Mitja,Pongrac Paula

Abstract

Increasing the concentration of an element in edible produce (i.e., biofortification) can mitigate the element deficiency in humans. Sprouts are small but popular part of healthy diets providing vitamins and essential elements throughout the year. Element composition of sprouts can easily be amended, e.g., by soaking the grains in element-rich solution before germination (grain-priming). In addition, pre-treatment of grains to improve element translocation from the solution into the grain may further enhance the element concentration in the sprout. Cold plasma technique could provide such solution, as it increases wettability and water uptake of grains. Grains of common buckwheat (Fogopyrum esculentum Moench) were pre-treated/ untreated with cold plasma and soaked in ZnCl2 solution/pure water. Germination tests, α-amylase activity, grain hydrophilic properties and water uptake were assessed. Element composition of grain tissues and of sprouts was assessed by micro-particle-induced-X-ray emission and X-ray fluorescence spectroscopy, respectively. Grain-priming increased Zn concentration in shoots of common buckwheat sprouts more than five-times, namely from 79 to 423 mg Zn kg−1 dry weight. Cold plasma treatment increased grain wettability and water uptake into the grain. However, cold plasma pre-treatment followed by grain-priming with ZnCl2 did not increase Zn concentration in different grain tissues or in the sprouts more than the priming alone, but rather decreased the Zn concentration in sprout shoots (average ± standard error: 216 ± 6.13 and 174 ± 7.57 mg Zn kg−1 dry weight, respectively). When the fresh weight portion of whole sprouts (i.e., of roots and shoots) was considered, comparable average requirements of Zn, namely 24.5 % and 35 % for adult men and women would be satisfied by consuming cold plasma pre-treated and not pre-treated grains. Potential advantages of cold plasma pre-treatment need to be tested further, mainly to optimize the duration of soaking required to produce Zn-enriched sprouts.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3