Long-term iron supplementation combined with vitamin B6 enhances maximal oxygen uptake and promotes skeletal muscle-specific mitochondrial biogenesis in rats

Author:

Zhou Lei,Mozaffaritabar Soroosh,Kolonics Attila,Kawamura Takuji,Koike Atsuko,Kéringer Johanna,Gu Yaodong,Karabanov Roman,Radák Zsolt

Abstract

IntroductionIron is an essential micronutrient that plays a crucial role in various biological processes. Previous studies have shown that iron supplementation is related to exercise performance and endurance capacity improvements. However, the underlying mechanisms responsible for these effects are not well understood. Recent studies have suggested the beneficial impact of iron supplementation on mitochondrial function and its ability to rescue mitochondrial function under adverse stress in vitro and rodents. Based on current knowledge, our study aimed to investigate whether the changes in exercise performance resulting from iron supplementation are associated with its effect on mitochondrial function.MethodsIn this study, we orally administered an iron-based supplement to rats for 30 consecutive days at a dosage of 0.66 mg iron/kg body weight and vitamin B6 at a dosage of 0.46 mg/kg.ResultsOur findings reveal that long-term iron supplementation, in combination with vitamin B6, led to less body weight gained and increased VO2 max in rats. Besides, the treatment substantially increased Complex I- and Complex II-driven ATP production in intact mitochondria isolated from gastrocnemius and cerebellum. However, the treatment did not change basal and succinate-induced ROS production in mitochondria from the cerebellum and skeletal muscle. Furthermore, the iron intervention significantly upregulated several skeletal muscle mitochondrial biogenesis and metabolism-related biomarkers, including PGC-1α, SIRT1, NRF-2, SDHA, HSL, MTOR, and LON-P. However, it did not affect the muscular protein expression of SIRT3, FNDC5, LDH, FIS1, MFN1, eNOS, and nNOS. Interestingly, the iron intervention did not exert similar effects on the hippocampus of rats.DiscussionIn conclusion, our study demonstrates that long-term iron supplementation, in combination with vitamin B6, increases VO2 max, possibly through its positive role in regulating skeletal muscle-specific mitochondrial biogenesis and energy production in rats.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3