Inhibitory effects of cassiae semen extract on the formation of 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) in model system

Author:

Yu Di,Li Youyou,Jiang Donghua,Kong Fanlei

Abstract

Introduction2-Amino-1-methyl-6-phenylimidazole [4,5-b] pyridine (PhIP), a heterocyclic amine (HAA), is found in meat products heated at high temperatures. However, PhIP is a mutagenic and potential carcinogenic compound. Cassiae semen, a type of medicine and food homology plant, is abundant in China and has been less applied for inhibiting heterocyclic amines.MethodsTo investigate the inhibitory effect of cassiae semen extract on PhIP formation within a model system and elucidate the inhibitory mechanism, an ultrasonic-assisted method with 70% ethanol was used to obtain cassiae semen extract, which was added to a model system (0.6 mmol of phenylalanine: creatinine, 1:1). PhIP was analyzed by LC–MS to determine inhibitory effect. The byproducts of the system and the mechanism of PhIP inhibition were verified by adding the extract to a model mixture of phenylacetaldehyde, phenylacetaldehyde and creatinine.ResultsThe results indicated that PhIP production decreased as the concentration of cassiae semen extract increased, and the highest inhibition rate was 91.9%. Byproduct (E), with a mass–charge ratio of m/z 199.9, was detected in the phenylalanine and creatinine model system but was not detected in the other systems. The cassiae semen extract may have reacted with phenylalanine to produce byproduct (E), which prevented the degradation of phenylalanine by the Strecker reaction to produce phenylacetaldehyde.DiscussionCassiae semen extract consumed phenylalanine, which is the precursor for PhIP, thus inhibiting the formation of phenylacetaldehyde and ultimately inhibiting PhIP formation. The main objective of this study was to elucidate the mechanism by which cassiae semen inhibit PhIP formation and establish a theoretical and scientific foundation for practical control measures.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3