Feasibility study on the use of “Qi-tonifying medicine compound” as an anti-fatigue functional food ingredient based on network pharmacology and molecular docking

Author:

Wu Yi,Ma Yixuan,Cao Jinguo,Xie Rui,Chen Feng,Hu Wen,Huang Yushan

Abstract

IntroductionFatigue has attracted broad attention in recent years due to its high morbidity rates. The use of functional foods to relieve fatigue-associated symptoms is becoming increasingly popular and has achieved relatively good results. In this study, network pharmacology and molecular docking strategies were used to establish the material basis and mechanisms of Chinese herbal compounds in fatigue treatment. According to traditional medicine theories and relevant guidance documents published by the Chinese Ministry of Health, four herbal medicines, including Eucommia ulmoides Oliver bark, Eucommia ulmoides Oliver male flower, Panax notoginseng, and Syzygium aromaticum (EEPS), were selected to constitute the anti-fatigue herbal compound that may be suitable as functional food ingredients.MethodsThe major active ingredients in EEPS were identified via comprehensive literature search and Traditional Chinese Medicine Systems Pharmacology database search. Corresponding targets for these ingredients were predicted using SwissTargetPrediction. The network was constructed using Cytoscape 3.9.1 to obtain key ingredients. Prediction of absorption, distribution, metabolism, excretion and toxicity properties was performed using the ADMETIab 2.0 database. The anti-fatigue targets were retrieved from GeneCards v5.13, OMIM, TTD and DisGeNET 7.0 databases. Then, the potential targets of EEPS in fatigue treatment were screened through a Venn diagram. A protein–protein interaction (PPI) network of these overlapping targets was constructed, and the hub targets in the network selected through topological screening. Gene Ontology and KEGG pathway enrichment analyses were performed using the DAVID database and the bioinformatics online platform. Finally, AutoDock tools were used to verify the binding capacity between the key active ingredients and the core targets.Results and DiscussionThis study identified the active ingredients and potential molecular mechanisms of EEPS in fatigue treatment, which will provide a foundation for future research on applications of herbal medicines in the functional food industry.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3