Active learning strategies for robotic tactile texture recognition tasks

Author:

Das Shemonto,Prado da Fonseca Vinicius,Soares Amilcar

Abstract

Accurate texture classification empowers robots to improve their perception and comprehension of the environment, enabling informed decision-making and appropriate responses to diverse materials and surfaces. Still, there are challenges for texture classification regarding the vast amount of time series data generated from robots’ sensors. For instance, robots are anticipated to leverage human feedback during interactions with the environment, particularly in cases of misclassification or uncertainty. With the diversity of objects and textures in daily activities, Active Learning (AL) can be employed to minimize the number of samples the robot needs to request from humans, streamlining the learning process. In the present work, we use AL to select the most informative samples for annotation, thus reducing the human labeling effort required to achieve high performance for classifying textures. We also use a sliding window strategy for extracting features from the sensor’s time series used in our experiments. Our multi-class dataset (e.g., 12 textures) challenges traditional AL strategies since standard techniques cannot control the number of instances per class selected to be labeled. Therefore, we propose a novel class-balancing instance selection algorithm that we integrate with standard AL strategies. Moreover, we evaluate the effect of sliding windows of two-time intervals (3 and 6 s) on our AL Strategies. Finally, we analyze in our experiments the performance of AL strategies, with and without the balancing algorithm, regarding f1-score, and positive effects are observed in terms of performance when using our proposed data pipeline. Our results show that the training data can be reduced to 70% using an AL strategy regardless of the machine learning model and reach, and in many cases, surpass a baseline performance. Finally, exploring the textures with a 6-s window achieves the best performance, and using either Extra Trees produces an average f1-score of 90.21% in the texture classification data set.

Funder

Natural Sciences and Engineering Research Council of Canada

Mitacs

Publisher

Frontiers Media SA

Reference47 articles.

1. Trends and challenges in robot manipulation;Billard;Science,2019

2. Random forests;Breiman;Mach. Learn.,2001

3. Transparent active learning for robots;Chao,2010

4. Xgboost: a scalable tree boosting system;Chen,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3