Balancing Collective Exploration and Exploitation in Multi-Agent and Multi-Robot Systems: A Review

Author:

Kwa Hian Lee,Leong Kit Jabez,Bouffanais Roland

Abstract

Multi-agent systems and multi-robot systems have been recognized as unique solutions to complex dynamic tasks distributed in space. Their effectiveness in accomplishing these tasks rests upon the design of cooperative control strategies, which is acknowledged to be challenging and nontrivial. In particular, the effectiveness of these strategies has been shown to be related to the so-called exploration–exploitation dilemma: i.e., the existence of a distinct balance between exploitative actions and exploratory ones while the system is operating. Recent results point to the need for a dynamic exploration–exploitation balance to unlock high levels of flexibility, adaptivity, and swarm intelligence. This important point is especially apparent when dealing with fast-changing environments. Problems involving dynamic environments have been dealt with by different scientific communities using theory, simulations, as well as large-scale experiments. Such results spread across a range of disciplines can hinder one’s ability to understand and manage the intricacies of the exploration–exploitation challenge. In this review, we summarize and categorize the methods used to control the level of exploration and exploitation carried out by an multi-agent systems. Lastly, we discuss the critical need for suitable metrics and benchmark problems to quantitatively assess and compare the levels of exploration and exploitation, as well as the overall performance of a system with a given cooperative control algorithm.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference211 articles.

1. Multirobot Patrolling against Adaptive Opponents with Limited Information;Alvarenga,2020

2. An Elitist Self-Adaptive Step-Size Search for Structural Design Optimization;Azad;Appl. Soft Comput.,2014

3. Exploitation vs. Exploration: Choosing a Supplier in an Environment of Incomplete Information;Azoulay-Schwartz;Decis. Support Syst.,2004

4. Fair Multi-Target Tracking in Cooperative Multi-Robot Systems;Banfi,2015

5. A Review of Swarm Robotics Tasks;Bayındır;Neurocomputing,2016

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3