Effects of ethephon on heartwood formation and related physiological indices of Dalbergia odorifera T. Chen

Author:

Zhu Yuan-Jing,Li Jia-Wen,Meng Hui,He Wen-Jie,Yang Yun,Wei Jian-He

Abstract

IntroductionDalbergia odorifera T. Chen, known as fragrant rosewood, is a rare and endangered tree species. Studies have shown that plant growth regulators can effectively promote heartwood formation. This study aimed to investigate the effects of ethephon (ETH) on heartwood formation and the influence of ethephon and hydrogen peroxide (H2O2) on the physiological characteristics in D. odorifera.MethodsD. odorifera branches underwent treatment with 2.5% plant growth regulators, including ETH, jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), H2O2, and inhibitors such as ascorbic acid (AsA) to inhibit H2O2 synthesis, and (S) -trans 2-amino-4 - (2-aminoethoxy) -3-butene (AVG) to inhibit ethylene synthesis. After a 14-day period, we conducted an analysis to evaluate the impact of these plant growth regulators on elongation distance, vessel occlusion percentage, and trans-nerol content. Additionally, the effects of ETH and H2O2 on endogenous plant hormones, H2O2 content, soluble protein content, and enzyme activity were investigated within 0-48 h of treatment.ResultsAfter treatment with ETH for 14 days, the extension distance of the heartwood material was 15 cm, while the trans-nerolol content was 15 times that of the ABA group. ETH and H2O2 promoted endogenous ethylene synthesis; Ethylene content peaked at 6 and 18 h. The peak ethylene content in the ETH group was 68.07%, 12.89%, and 20.87% higher than the initial value of the H2O2 group and ddH2O group, respectively, and 29.64% higher than that in the AVG group. The soluble protein content and activity of related enzymes were significantly increased following ETH treatment.DiscussionETH exhibited the most impact on heartwood formation while not hindering tree growth. This treatment effectively triggered the production of endogenous ethylene in plants and enhanced the activity of essential enzymes involved in heartwood formation. These findings serve as a valuable reference for future investigations into heartwood formation.

Funder

Hainan Provincial Department of Science and Technology

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences and Peking Union Medical College

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3