Characterization and mechanism of seed dormancy in Symplocos paniculata

Author:

Tang Qiaoyu,Chen Yunzhu,Jiang Lijuan,Chen Jingzhen,Li Changzhu,Zeng Wenbin,Liu Qiang,Li Peiwang

Abstract

Symplocos paniculata is a highly desirable oil species for biodiesel and premium edible oil feedstock. While germplasm preservation and breeding are crucial, the severity of seed dormancy poses a challenge to successful germination. We employed S. paniculata seeds as experimental materials and conducted an investigation into the types and causes of seed dormancy by analyzing the morphology and developmental characteristics of its embryo, exploring the water permeability property of the endocarp, and examining the presence of endogenous inhibitors, aiming to establish a theoretical foundation for overcoming seed dormancy and maximizing germplasm resource utilization. The findings revealed that the seed embryo had matured into a fully developed embryo, and no dormancy in terms of embryo morphology was observed. Upon reaching maturity, the endocarp of seeds undergoes significant lignification, resulting in notable differences in water absorption between cracked and intact seeds. The impermeability of the endocarp is one of the factors contributing to mechanical restriction. The different phases of endosperm extraction exerted varying effects on the germination of Chinese cabbage seeds, with the methanol phase exhibiting the most potent inhibitory effect. The presence of endogenous inhibitors emerged as the primary factor contributing to physiological dormancy in seeds. GC-MS analysis and validation trials revealed that fatty acids and phenolics, including hexadecanoic acid, oxadecanoic acid, and m-cresol, constituted the main types of endogenous inhibitory compounds found within the endosperm. These findings suggest that the seed dormancy in S. paniculata seeds has endocarp mechanical restriction, and the presence of endogenous inhibitors causes physiological dormancy.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3