Physiological and Biochemical Response of Tropical Fruits to Hypoxia/Anoxia

Author:

Benkeblia Noureddine

Abstract

Aerobic respiration and oxygen consumption are indicators of routine metabolic rate, and dissolved oxygen in plant tissues is one of the most important environmental factors affecting their survival. The reduction of available O2 leads to hypoxia which causes a limitation of the oxidative phosphorylation; when O2 is absent, tissues generate ATP by activating the fermentative glycolysis to sustain glycolysis in the absence of mitochondrial respiration, which results in the production of lactate. Overall, hypoxia was reported to often decrease the respiration rate (O2 uptake) and delay the climacteric rise of ethylene in climacteric fruits by inhibiting action, thus delaying their ripening. Much research has been done on the application of postharvest hypoxia and anoxia treatment to temperate fresh crops (controlled or modified atmosphere), however, very few reported on tropical commodities. Indeed, the physiological mode of action of low or absence of oxygen in fresh crops is not well understood; and the physiological and biochemical bases of the effects low or absence of O2 are also yet to be clarified. Recent investigations using omics technologies, however, have provided useful information on the response of fresh fruits and vegetables to this abiotic stress. The aims of this review are to (i) report on the oxygen exchange in the crops tissue, (ii) discuss the metabolic responses to hypoxia and anoxia, and (iii) report the physiological and biochemical responses of crops tissues to these abiotic stresses and the potential benefits of these environmental conditions.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3