Contribution of endophytes towards improving plant bioactive metabolites: a rescue option against red-taping of medicinal plants

Author:

Tsipinana Sinawo,Husseiny Samah,Alayande Kazeem A.,Raslan Mai,Amoo Stephen,Adeleke Rasheed

Abstract

Medicinal plants remain a valuable source for natural drug bioprospecting owing to their multi-target spectrum. However, their use as raw materials for novel drug synthesis has been greatly limited by unsustainable harvesting leading to decimation of their wild populations coupled with inherent low concentrations of constituent secondary metabolites per unit mass. Thus, adding value to the medicinal plants research dynamics calls for adequate attention. In light of this, medicinal plants harbour endophytes which are believed to be contributing towards the host plant survival and bioactive metabolites through series of physiological interference. Stimulating secondary metabolite production in medicinal plants by using endophytes as plant growth regulators has been demonstrated to be one of the most effective methods for increasing metabolite syntheses. Use of endophytes as plant growth promotors could help to ensure continuous supply of medicinal plants, and mitigate issues with fear of extinction. Endophytes minimize heavy metal toxicity in medicinal plants. It has been hypothesized that when medicinal plants are exposed to harsh conditions, associated endophytes are the primary signalling channels that induce defensive reactions. Endophytes go through different biochemical processes which lead to activation of defence mechanisms in the host plants. Thus, through signal transduction pathways, endophytic microorganisms influence genes involved in the generation of secondary metabolites by plant cells. Additionally, elucidating the role of gene clusters in production of secondary metabolites could expose factors associated with low secondary metabolites by medicinal plants. Promising endophyte strains can be manipulated for enhanced production of metabolites, hence, better probability of novel bioactive metabolites through strain improvement, mutagenesis, co-cultivation, and media adjustment.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3