Efficient residual network using hyperspectral images for corn variety identification

Author:

Li Xueyong,Zhai Mingjia,Zheng Liyuan,Zhou Ling,Xie Xiwang,Zhao Wenyi,Zhang Weidong

Abstract

Corn seeds are an essential element in agricultural production, and accurate identification of their varieties and quality is crucial for planting management, variety improvement, and agricultural product quality control. However, more than traditional manual classification methods are needed to meet the needs of intelligent agriculture. With the rapid development of deep learning methods in the computer field, we propose an efficient residual network named ERNet to identify hyperspectral corn seeds. First, we use linear discriminant analysis to perform dimensionality reduction processing on hyperspectral corn seed images so that the images can be smoothly input into the network. Second, we use effective residual blocks to extract fine-grained features from images. Lastly, we detect and categorize the hyperspectral corn seed images using the classifier softmax. ERNet performs exceptionally well compared to other deep learning techniques and conventional methods. With 98.36% accuracy rate, the result is a valuable reference for classification studies, including hyperspectral corn seed pictures.

Publisher

Frontiers Media SA

Reference60 articles.

1. Maize leaf disease classification using deep convolutional neural networks;Ahila Priyadharshini;Neural Computing Appl.,2019

2. Hyperspectral image classification—traditional to deep models: A survey for future prospects;Ahmad;IEEE J. select. top. Appl. Earth observat. Remote Sens.,2021

3. Classification of pepper seed quality based on internal structure using x-ray ct imaging;Ahmed;Comput. Electron. Agric.,2020

4. Latent dirichlet allocation;Blei;J. Mach. Learn. Res.,2003

5. Hyperspectral image classification with convolutional neural network and active learning;Cao;IEEE Trans. Geosci. Remote Sens.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3