Phylogenetic analyses allow species-level recognition of Leptographium wageneri varieties that cause black stain root disease of conifers in western North America

Author:

Choi Daram,Harrington Thomas C.,Shaw David C.,Stewart Jane E.,Klopfenstein Ned B.,Kroese Duncan R.,Kim Mee-Sook

Abstract

Leptographium wageneri is a native fungal pathogen in western North America that causes black stain root disease (BSRD) of conifers. Three host-specialized varieties of this pathogen were previously described: L. wageneri var. wageneri on pinyon pines (Pinus monophylla and P. edulis); L. wageneri var. ponderosum, primarily on hard pines (e.g., P. ponderosa, P. jeffreyi); and L. wageneri var. pseudotsugae on Douglas-fir (Pseudotsuga menziesii). Morphological, physiological, and ecological differences among the three pathogen varieties have been previously determined; however, DNA-based characterization and analyses are needed to determine the genetic relationships among these varieties. The objective of this study was to use DNA sequences of 10 gene regions to assess phylogenetic relationships among L. wageneri isolates collected from different hosts. The multigene phylogenetic analyses, based on maximum likelihood and Bayesian inference, strongly supported species-level separation of the three L. wageneri varieties. These results, in conjunction with previously established phenotypic differences, support the elevation of L. wageneri var. ponderosum and L. wageneri var. pseudotsugae to the species level as L. ponderosum comb. nov. and L. pseudotsugae comb. nov., respectively, while maintaining L. wageneri var. wageneri as Leptographium wageneri. Characterization of the three Leptographium species, each with distinct host ranges, provides a baseline to further understand the ecological interactions and evolutionary relationships of these forest pathogens, which informs management of black stain root disease.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference45 articles.

1. Spatial genetic structure of the insect-vectored conifer pathogen Leptographium wageneri suggests long distance gene flow among Douglas-fir plantations in western Oregon;Bennett;Front. Forests Global Changes,2021

2. Leptographium wageneri cause of black-stain root disease: a review of its discovery, occurrence and biology with emphasis on pinyon and ponderosa piney;Cobb,1988

3. Generic boundaries in the Ophiostomatales reconsidered and revised;de Beer;Stud. Mycology.,2022

4. Phylogeny and taxonomy of species in the Grosmannia serpens complex;Duong;Mycologia,2012

5. Mating type markers reveal high levels of heterothallism in Leptographium sensu lato;Duong;Fungal Biol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3