Optimizing water and nitrogen productivity of wheat and triticale across diverse production environments to improve the sustainability of baked products

Author:

Tamagno Santiago,Pittelkow Cameron M.,Fohner George,Nelsen Taylor S.,Hegarty Joshua M.,Carter Claudia E.,Vang Teng,Lundy Mark E.

Abstract

Wheat (Triticum aestivum L.) is a major global commodity and the primary source for baked products in agri-food supply chains. Consumers are increasingly demanding more nutritious food products with less environmental degradation, particularly related to water and fertilizer nitrogen (N) inputs. While triticale (× Triticosecale) is often referenced as having superior abiotic stress tolerance compared to wheat, few studies have compared crop productivity and resource use efficiencies under a range of N-and water-limited conditions. Because previous work has shown that blending wheat with triticale in a 40:60 ratio can yield acceptable and more nutritious baked products, we tested the hypothesis that increasing the use of triticale grain in the baking supply chain would reduce the environmental footprint for water and N fertilizer use. Using a dataset comprised of 37 site-years encompassing normal and stress-induced environments in California, we assessed yield, yield stability, and the efficiency of water and fertilizer N use for 67 and 17 commercial varieties of wheat and triticale, respectively. By identifying environments that favor one crop type over the other, we then quantified the sustainability implications of producing a mixed triticale-wheat flour at the regional scale. Results indicate that triticale outyielded wheat by 11% (p < 0.05) and 19% (p < 0.05) under average and N-limited conditions, respectively. However, wheat was 3% (p < 0.05) more productive in water-limited environments. Overall, triticale had greater yield stability and produced more grain per unit of water and N fertilizer inputs, especially in high-yielding environments. We estimate these differences could translate to regional N fertilizer savings (up to 555 Mg N or 166 CO2-eq kg ha−1) in a 40:60 blending scenario when wheat is sourced from water-limited and low-yielding fields and triticale from N-limited and high-yielding areas. Results suggest that optimizing the agronomic and environmental benefits of triticale would increase the overall resource use efficiency and sustainability of the agri-food system, although such a transition would require fundamental changes to the current system spanning producers, processors, and consumers.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference81 articles.

1. Effect of bread wheat, durum wheat and triticale blends on Chapati, bread and biscuit;Bakhshi;J. food sci. tech. (Mysore),1989

2. Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement;Barraclough;Eur. J. Agron.,2010

3. Fitting linear mixed-effects models using lme4;Bates;J. Stat. Softw.,2015

4. Mixtools: an R package for analyzing mixture models;Benaglia;J. Stat. Softw.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3