Cotton-Net: efficient and accurate rapid detection of impurity content in machine-picked seed cotton using near-infrared spectroscopy

Author:

Li Qingxu,Zhou Wanhuai,Zhang Xuedong,Li Hao,Li Mingjie,Liang Houjun

Abstract

Widespread adoption of machine-picked cotton in China, the impurity content of seed cotton has increased significantly. This impurity content holds direct implications for the valuation of seed cotton and exerts a consequential influence on the ensuing quality of processed lint and textiles. Presently, the primary approach for assessing impurity content in seed cotton primarily depends on semi-automated testing instruments, exhibiting suboptimal detection efficiency and not well-suited for the impurity detection requirements during the purchase of seed cotton. To address this challenge, this study introduces a seed cotton near-infrared spectral (NIRS) data acquisition system, facilitating the rapid collection of seed cotton spectral data. Three pretreatment algorithms, namely SG (Savitzky-Golay convolutional smoothing), SNV (Standard Normal Variate Transformation), and Normalization, were applied to preprocess the seed cotton spectral data. Cotton-Net, a one-dimensional convolutional neural network aligned with the distinctive characteristics of the seed cotton spectral data, was developed in order to improve the prediction accuracy of seed cotton impurity content. Ablation experiments were performed, utilizing SELU, ReLU, and Sigmoid functions as activation functions. The experimental outcomes revealed that after normalization, employing SELU as the activation function led to the optimal performance of Cotton-Net, displaying a correlation coefficient of 0.9063 and an RMSE (Root Mean Square Error) of 0.0546. In the context of machine learning modeling, the LSSVM model, developed after Normalization and Random Frog algorithm processing, demonstrated superior performance, achieving a correlation coefficient of 0.8662 and an RMSE of 0.0622. In comparison, the correlation coefficient of Cotton-Net increased by 4.01%. This approach holds significant potential to underpin the subsequent development of rapid detection instruments targeting seed cotton impurities.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3