Response analysis of Pinus sibirica to pine wood nematode infection through transcriptomics and metabolomics study

Author:

Zhang Jiawei,Ye Lingfang,Chen Qiaoli,Wang Feng

Abstract

Pinus sibirica is primarily distributed in Siberia. Owing to its excellent cold resistance and development potential, it has become an important introduced tree species in the Greater Xing’an area of China. Pine wilt disease, triggered by the pine wood nematode (PWN, Bursaphelenchus xylophilus), constitutes a profoundly critical affliction within forest ecosystems. Its incidence has extended to the northeastern region of China in recent years. To explore the potential host status of P. sibirica in the Greater Xing’an area for PWN and to elucidate the responses following inoculation, artificial inoculation, transcriptomics, and metabolomics methods were used. In the artificial inoculation experiments, quantitative analysis of nematode populations within the trees demonstrated that PWN exhibited normal growth and reproductive capabilities within P. sibirica. Subsequently, transcriptome and metabolome sequencing were conducted at four time points before disease onset (3-, 5-, 7-, and 9-days post inoculation). Gene trend analysis and differentially expressed gene screening were employed and the results indicated that genes associated with the flavonoid biosynthesis pathway exhibited predominant enrichment among the up-regulated genes. Metabolome analysis showed that the abundance of flavonoid-related metabolites in P. sibirica increased after inoculation with PWN. Integrated analysis of transcriptome and metabolome revealed that after PWN inoculation in P. sibirica, two chalcone synthase (chs) genes and a chalcone isomerase (chi) gene were significantly upregulated, and the upregulation should accumulate naringenin, pinocembrin, and apigenin to help P. sibirica resist infection of PWN. The results suggested that flavonoid biosynthesis pathway continued to respond after P. sibirica was infected with PWN and played an important role in the interaction between P. sibirica and PWN.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3