Modulating ascorbic acid levels to optimize somatic embryogenesis in Picea abies (L.) H. Karst. Insights into oxidative stress and endogenous phytohormones regulation

Author:

Hazubska-Przybył Teresa,Obarska Agata,Konecka Agata,Kijowska-Oberc Joanna,Wawrzyniak Mikołaj Krzysztof,Piotrowska-Niczyporuk Alicja,Staszak Aleksandra Maria,Ratajczak Ewelina

Abstract

Global warming has adversely affected Picea abies (L.) H. Karst. forests in Europe, prompting the need for innovative forest-breeding strategies. Somatic embryogenesis (SE) offers promise but requires protocol refinement. Understanding the molecular mechanisms governing somatic embryo development is essential, as oxidative stress plays a crucial role in SE regulation. Ascorbic acid (ASA), is a vital antioxidant that can potentially control oxidative stress. In the present study, we normalized ASA concentrations in induction and proliferation media to enhance embryogenic tissue (ET) regeneration and proliferation capacity of mature explants. The media were supplemented with ASA at 0 mg l−1, 25 mg l−1, 50 mg l−1, 100 mg l−1, and 200 mg l−1. The accumulation of hydrogen peroxide (H2O2) and endogenous phytohormones, including auxins, cytokinins, brassinosteroids, abscisic acid, and gibberellin, was measured in non-embryonic calli and ET. Subsequently, their impact on ET induction and multiplication was analyzed. Our results demonstrate that application of ASA at concentrations of 25 mg l−1 and 200 mg l−1 led to increased H2O2 levels, potentially inducing oxidative stress while simultaneously reducing the levels of all endohormone groups. Notably, the highest ET induction frequency (approximately 70%) was observed for ASA at 50 mg l−1. These findings will enhance SE induction procedures, particularly in more resistant explants, underscoring the significance of ASA application to culture media.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3