The Bcl-2-associated athanogene gene family in tobacco (Nicotiana tabacum) and the function of NtBAG5 in leaf senescence

Author:

Gu Linxin,Hou Bing,Chen Xiao,Wang Yu,Chang Pingan,He Xiaohong,Gong Daping,Sun Quan

Abstract

Leaf senescence in tobacco is closely related to leaf maturation and secondary metabolites. Bcl-2-associated athanogene (BAG) family members are highly conserved proteins and play key roles in senescence, growth and development, and resistance to biotic and abiotic stresses. Herein, the BAG family of tobacco was identified and characterized. In total, 19 tobacco BAG protein candidate genes were identified and divided into two classes, class I comprising NtBAG1a–e, NtBAG3a–b, and NtBAG4a–c and class II including NtBAG5a–e, NtBAG6a–b, and NtBAG7. Genes in the same subfamily or branch of the phylogenetic tree exhibited similarities in gene structure and the cis-element on promoters. RNA-seq and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) revealed that the expression of NtBAG5c–f and NtBAG6a–b was upregulated in senescent leaves, implying that they play a role in regulating leaf senescence. NtBAG5c was localized in the nucleus and cell wall as a homology of leaf senescence related gene AtBAG5. Further, the interaction of NtBAG5c with heat-shock protein 70 (HSP70) and sHSP20 was demonstrated using yeast two-hybrid experiment. Virus-induced gene silencing indicated that NtBAG5c reduced the lignin content and increased superoxide dismutase (SOD) activity and hydrogen peroxide (H2O2) accumulation. In NtBAG5c-silenced plants, the expression of multiple senescence-related genes cysteine proteinase (NtCP1), SENESCENCE 4 (SEN4) and SENESCENCE-ASSOCIATED GENE 12 (SAG12) was downregulated. In conclusion, tobacco BAG protein candidate genes were identified and characterized for the first time.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3