Design and experimental research of air-assisted nozzle for pesticide application in orchard

Author:

Ou Mingxiong,Zhang Jiayao,Du Wentao,Wu Minmin,Gao Tianyu,Jia Weidong,Dong Xiang,Zhang Tie,Ding Suming

Abstract

This article reports the design and experiment of a novel air-assisted nozzle for pesticide application in orchard. A novel air-assisted nozzle was designed based on the transverse jet atomization pattern. This article conducted the performance and deposition experiments and established the mathematical model of volume median diameter (D50) and liquid flow rate with the nozzle design parameters. The D50 of this air-assisted nozzle ranged from 52.45 μm to 113.67 μm, and the liquid flow rate ranged from 142.6 ml/min to 1,607.8 ml/min within the designed conditions. These performances meet the low-volume and ultra-low-volume pesticide application in orchard. The droplet deposition experiment results demonstrated that the droplet coverage distribution in different layers and columns is relatively uniform, and the predicted value of spray penetration (SP) numbers SPiA, SPiB, and SPiC (i = 1, 2, and 3) are approximately 70%, 60%, and 70%, respectively. The droplet deposits on the foliage of the canopy (inside and outside) uniformly bring benefit for plant protection and pesticide saving. Compared with the traditional air-assisted nozzle that adopts a coaxial flow atomization pattern, the atomization efficiency of this air-assisted nozzle is higher. Moreover, the nozzle air pressure and liquid flow rate are considerably lower and greater than the traditional air-assisted nozzle, and these results proved that this air-assisted nozzle has great potential in orchard pesticide application. The relationship between the D50 and nozzle liquid pressure of this air-assisted nozzle differs from that of traditional air-assisted nozzles due to the atomization pattern and process. While this article provides an explanation for this relationship, further study about the atomization process and mechanism is needed so as to improve the performance.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3