How Mycorrhizal Associations Influence Orchid Distribution and Population Dynamics

Author:

Li Taiqiang,Wu Shimao,Yang Wenke,Selosse Marc-André,Gao Jiangyun

Abstract

Orchid distribution and population dynamics are influenced by a variety of ecological factors and the formation of holobionts, which play key roles in colonization and ecological community construction. Seed germination, seedling establishment, reproduction, and survival of orchid species are strongly dependent on orchid mycorrhizal fungi (OMF), with mycorrhizal cheating increasingly observed in photosynthetic orchids. Therefore, changes in the composition and abundance of OMF can have profound effects on orchid distribution and fitness. Network analysis is an important tool for the study of interactions between plants, microbes, and the environment, because of the insights that it can provide into the interactions and coexistence patterns among species. Here, we provide a comprehensive overview, systematically describing the current research status of the effects of OMF on orchid distribution and dynamics, phylogenetic signals in orchid–OMF interactions, and OMF networks. We argue that orchid–OMF associations exhibit complementary and specific effects that are highly adapted to their environment. Such specificity of associations may affect the niche breadth of orchid species and act as a stabilizing force in plant–microbe coevolution. We postulate that network analysis is required to elucidate the functions of fungal partners beyond their effects on germination and growth. Such studies may lend insight into the microbial ecology of orchids and provide a scientific basis for the protection of orchids under natural conditions in an efficient and cost-effective manner.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3