Effects of feeding injury from Popillia japonica (Coleoptera: Scarabaeidae) on soybean spectral reflectance and yield

Author:

Ribeiro Arthur V.,Cira Theresa M.,MacRae Ian V.,Koch Robert L.

Abstract

Remote sensing has been shown to be a promising technology for the detection and monitoring of plant stresses including insect feeding. Popillia japonica Newman, is an invasive insect species in the United States, and a pest of concern to soybean, Glycine max (L.) Merr., in the upper Midwest. To investigate the effects of P. japonica feeding injury (i.e., defoliation) on soybean canopy spectral reflectance and yield, field trials with plots of caged soybean plants were established during the summers of 2020 and 2021. In each year, field-collected P. japonica adults were released into some of the caged plots, creating a gradient of infestation levels and resulting injury. Estimates of injury caused by P. japonica, ground-based hyperspectral readings, total yield, and yield components were obtained from the caged plots. Injury was greatest in the upper canopy of soybean in plots infested with P. japonica. Overall mean canopy injury (i.e., across lower, middle, and upper canopy) ranged from 0.23 to 6.26%, which is representative of injury levels observed in soybean fields in the Midwest United States. Feeding injury from P. japonica tended to reduce measures of soybean canopy reflectance in near infra-red wavelengths (~700 to 1000 nm). These results indicate that remote sensing has potential for detection of injury from P. japonica and could facilitate scouting for this pest. Effects of P. japonica injury on total yield were not observed, but a reduction in seed size was detected in one of the two years. The threat to soybean yield posed by P. japonica alone appears minimal, but this pest adds to the guild of other defoliating insects in soybean whose combined effects could threaten yield. The results of this research will guide refinement of management recommendations for this pest in soybean and hold relevance for other cropping systems.

Funder

Minnesota Soybean Research and Promotion Council

Minnesota Invasive Terrestrial Plants and Pests Center, University of Minnesota

Publisher

Frontiers Media SA

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3