Facing diseases caused by trypanosomatid parasites: rational design of multifunctional oxidovanadium(IV) complexes with bioactive ligands

Author:

Scalese Gonzalo,Machado Ignacio,Salazar Fabiana,Coitiño E. Laura,Correia Isabel,Pessoa João Costa,Pérez-Díaz Leticia,Gambino Dinorah

Abstract

Searching for new prospective drugs against Chagas disease (American trypanosomiasis) and Leishmaniasis, a series of five heteroleptic vanadium compounds, [VIVO(L-H)(mpo)], where L are 8-hydroxyquinoline derivatives and mpo is 2-mercaptopyridine N-oxide, are synthesized and characterized. Comprehensive characterizations are conducted in solid state and in solution. The compounds are evaluated on epimastigotes and trypomastigotes of Trypanosoma cruzi and in promastigotes of Leishmania infantum, alongside on VERO cells, as a mammalian cell model. The compounds exhibit activity against both forms of T. cruzi and promastigotes of L. infantum, with the trypomastigote infective stage of T. cruzi displaying the highest sensitivity. The most selective vanadium compound [VIVO(L2-H)(mpo)], with L2 = 5-chloro-7-iodo-8-hydroxyquinoline, globally shows adequate selectivity towards the parasite and was selected to carry out further in-depth biological studies. [VIVO(L2-H)(mpo)] significantly impacted the infection potential of cell-derived trypomastigotes and hindered the replication of the T. cruzi amastigote form. Low total vanadium uptake by T. cruzi parasites and preferential accumulation in the soluble proteins fraction, with negligible localization in the DNA fraction, are determined. A trypanocide effect is observed across various concentrations of the compound. The generation of oxidative stress and the induction of mitochondria-dependent apoptosis are proposed as the main mechanisms of the parasite’s death by the VIVO compounds. Both theoretical predictions and experimental data support the hypothesis that inhibiting the parasite-specific enzyme NADH-fumarate reductase activity plays a crucial role in the trypanocidal action of these complexes. Globally, [VIVO(L-H)(mpo)] complexes could be considered interesting anti-T. cruzi agents that deserve further research.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3